Artificial General Intelligence

De Cortázar por Nosotros
Revisión a fecha de 05:49 3 feb 2025; AlvinMcginnis (Discusión | contribuciones)

(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)
Saltar a: navegación, buscar


Artificial basic intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities throughout a large range of cognitive jobs. This contrasts with narrow AI, which is restricted to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly exceeds human cognitive capabilities. AGI is thought about among the definitions of strong AI.


Creating AGI is a primary goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and development projects across 37 countries. [4]

The timeline for achieving AGI remains a topic of ongoing argument among researchers and specialists. Since 2023, some argue that it might be possible in years or years; others preserve it might take a century or longer; a minority believe it might never ever be achieved; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed concerns about the quick development towards AGI, suggesting it might be accomplished faster than lots of expect. [7]

There is debate on the exact definition of AGI and relating to whether contemporary big language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical topic in sci-fi and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many professionals on AI have specified that reducing the danger of human termination posed by AGI needs to be a global top priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a threat. [16] [17]

Terminology


AGI is likewise referred to as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]

Some scholastic sources schedule the term "strong AI" for computer system programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to fix one particular problem but does not have basic cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as human beings. [a]

Related ideas include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is a lot more typically intelligent than humans, [23] while the idea of transformative AI connects to AI having a big influence on society, for example, similar to the agricultural or commercial revolution. [24]

A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, competent, specialist, virtuoso, and superhuman. For example, a competent AGI is defined as an AI that outperforms 50% of skilled adults in a vast array of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined but with a threshold of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]

Characteristics


Various popular meanings of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other popular meanings, and some scientists disagree with the more popular approaches. [b]

Intelligence characteristics


Researchers generally hold that intelligence is required to do all of the following: [27]

reason, usage method, fix puzzles, and make judgments under uncertainty
represent understanding, consisting of sound judgment understanding
plan
learn
- communicate in natural language
- if necessary, incorporate these abilities in completion of any provided objective


Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) think about extra qualities such as imagination (the capability to form novel psychological images and ideas) [28] and autonomy. [29]

Computer-based systems that show a lot of these capabilities exist (e.g. see computational creativity, automated thinking, choice assistance system, robot, evolutionary calculation, intelligent agent). There is debate about whether modern AI systems possess them to a sufficient degree.


Physical characteristics


Other abilities are thought about desirable in smart systems, as they may affect intelligence or help in its expression. These include: [30]

- the capability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. relocation and control items, modification place to explore, etc).


This consists of the ability to spot and react to danger. [31]

Although the capability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and control things, modification location to explore, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) might already be or end up being AGI. Even from a less positive perspective on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system is enough, supplied it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never ever been proscribed a particular physical embodiment and thus does not demand a capability for locomotion or conventional "eyes and ears". [32]

Tests for human-level AGI


Several tests suggested to confirm human-level AGI have actually been considered, including: [33] [34]

The concept of the test is that the maker has to attempt and pretend to be a male, by responding to concerns put to it, and it will only pass if the pretence is fairly persuading. A substantial portion of a jury, who must not be skilled about machines, must be taken in by the pretence. [37]

AI-complete issues


An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would require to carry out AGI, since the solution is beyond the capabilities of a purpose-specific algorithm. [47]

There are many issues that have actually been conjectured to need basic intelligence to solve in addition to people. Examples consist of computer system vision, natural language understanding, and dealing with unforeseen situations while solving any real-world problem. [48] Even a particular job like translation needs a device to check out and write in both languages, follow the author's argument (reason), understand the context (knowledge), and faithfully reproduce the author's initial intent (social intelligence). All of these issues need to be fixed simultaneously in order to reach human-level maker efficiency.


However, much of these jobs can now be performed by modern-day large language models. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on many benchmarks for reading comprehension and visual thinking. [49]

History


Classical AI


Modern AI research study began in the mid-1950s. [50] The first generation of AI scientists were encouraged that artificial basic intelligence was possible and that it would exist in just a few years. [51] AI pioneer Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]

Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could create by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the project of making HAL 9000 as practical as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the issue of producing 'artificial intelligence' will considerably be solved". [54]

Several classical AI projects, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar project, were directed at AGI.


However, in the early 1970s, it became apparent that researchers had grossly ignored the difficulty of the job. Funding firms ended up being hesitant of AGI and put scientists under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a table talk". [58] In response to this and the success of specialist systems, both industry and federal government pumped cash into the field. [56] [59] However, confidence in AI amazingly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For bphomesteading.com the 2nd time in twenty years, AI scientists who forecasted the impending achievement of AGI had been misinterpreted. By the 1990s, AI scientists had a credibility for making vain pledges. They ended up being reluctant to make predictions at all [d] and prevented reference of "human level" expert system for worry of being identified "wild-eyed dreamer [s]. [62]

Narrow AI research study


In the 1990s and early 21st century, mainstream AI accomplished business success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable results and commercial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology industry, and research in this vein is greatly funded in both academia and industry. As of 2018 [update], advancement in this field was considered an emerging trend, and a fully grown phase was anticipated to be reached in more than ten years. [64]

At the turn of the century, lots of traditional AI researchers [65] hoped that strong AI could be established by combining programs that solve different sub-problems. Hans Moravec wrote in 1988:


I am confident that this bottom-up route to expert system will one day fulfill the traditional top-down path more than half way, ready to offer the real-world skills and the commonsense knowledge that has been so frustratingly evasive in reasoning programs. Fully intelligent makers will result when the metaphorical golden spike is driven uniting the two efforts. [65]

However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:


The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is actually only one viable path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this path (or vice versa) - nor is it clear why we should even try to reach such a level, considering that it appears getting there would just amount to uprooting our symbols from their intrinsic significances (therefore merely decreasing ourselves to the practical equivalent of a programmable computer system). [66]

Modern artificial basic intelligence research


The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to in a wide variety of environments". [68] This kind of AGI, defined by the ability to maximise a mathematical meaning of intelligence instead of exhibit human-like behaviour, [69] was also called universal expert system. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a number of guest lecturers.


Since 2023 [upgrade], a little number of computer scientists are active in AGI research, and lots of contribute to a series of AGI conferences. However, progressively more scientists have an interest in open-ended learning, [76] [77] which is the idea of enabling AI to continually discover and innovate like people do.


Feasibility


As of 2023, the development and possible accomplishment of AGI stays a topic of extreme debate within the AI neighborhood. While conventional consensus held that AGI was a remote goal, current developments have led some researchers and market figures to declare that early types of AGI might currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a man can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century since it would need "unforeseeable and essentially unpredictable breakthroughs" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level expert system is as broad as the gulf between current area flight and useful faster-than-light spaceflight. [80]

A further difficulty is the absence of clarity in specifying what intelligence involves. Does it require consciousness? Must it show the capability to set goals as well as pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding needed? Does intelligence need explicitly duplicating the brain and its specific professors? Does it require feelings? [81]

Most AI researchers think strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, but that the present level of development is such that a date can not precisely be predicted. [84] AI experts' views on the expediency of AGI wax and subside. Four surveys performed in 2012 and 2013 recommended that the typical estimate among experts for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% responded to with "never ever" when asked the very same concern however with a 90% self-confidence rather. [85] [86] Further present AGI progress factors to consider can be discovered above Tests for confirming human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year timespan there is a strong predisposition towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They analyzed 95 forecasts made in between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft scientists published a detailed examination of GPT-4. They concluded: "Given the breadth and forum.batman.gainedge.org depth of GPT-4's capabilities, our company believe that it might fairly be seen as an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of people on the Torrance tests of creativity. [89] [90]

Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of basic intelligence has actually already been attained with frontier models. They wrote that unwillingness to this view comes from 4 primary reasons: a "healthy hesitation about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "dedication to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]

2023 also marked the introduction of big multimodal designs (large language models efficient in processing or producing multiple techniques such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the first of a series of models that "invest more time believing before they react". According to Mira Murati, this capability to think before responding represents a brand-new, extra paradigm. It improves model outputs by spending more computing power when generating the response, whereas the model scaling paradigm enhances outputs by increasing the design size, training information and training calculate power. [93] [94]

An OpenAI staff member, Vahid Kazemi, declared in 2024 that the company had actually accomplished AGI, stating, "In my opinion, we have already accomplished AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "much better than many people at the majority of tasks." He also attended to criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their learning process to the clinical approach of observing, hypothesizing, and verifying. These statements have stimulated argument, as they depend on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate amazing flexibility, they may not fully satisfy this standard. Notably, Kazemi's comments came quickly after OpenAI got rid of "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's tactical intents. [95]

Timescales


Progress in expert system has historically gone through periods of quick progress separated by periods when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to create area for more progress. [82] [98] [99] For instance, the hardware available in the twentieth century was not sufficient to execute deep learning, which needs large numbers of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time required before a truly versatile AGI is constructed differ from ten years to over a century. As of 2007 [upgrade], the consensus in the AGI research community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually provided a broad variety of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints found a predisposition towards anticipating that the beginning of AGI would happen within 16-26 years for modern-day and historic forecasts alike. That paper has been criticized for how it classified viewpoints as specialist or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the conventional approach utilized a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the existing deep learning wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly readily available and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in first grade. An adult pertains to about 100 usually. Similar tests were carried out in 2014, with the IQ score reaching a maximum worth of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language design efficient in performing lots of diverse jobs without specific training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]

In the same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to adhere to their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 different tasks. [110]

In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, contending that it exhibited more general intelligence than previous AI models and showed human-level performance in jobs covering numerous domains, such as mathematics, coding, and law. This research triggered a dispute on whether GPT-4 might be thought about an early, incomplete version of artificial general intelligence, highlighting the requirement for further exploration and examination of such systems. [111]

In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]

The idea that this stuff might in fact get smarter than people - a few people thought that, [...] But the majority of people thought it was method off. And I believed it was method off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis likewise said that "The progress in the last few years has actually been pretty amazing", which he sees no factor why it would decrease, anticipating AGI within a decade and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test a minimum of as well as human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "noticeably plausible". [115]

Whole brain emulation


While the advancement of transformer models like in ChatGPT is considered the most promising course to AGI, [116] [117] whole brain emulation can serve as an alternative approach. With whole brain simulation, a brain design is developed by scanning and mapping a biological brain in information, and then copying and imitating it on a computer system or another computational gadget. The simulation model should be adequately devoted to the initial, so that it behaves in virtually the exact same way as the original brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been discussed in synthetic intelligence research study [103] as a method to strong AI. Neuroimaging technologies that could provide the required detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of sufficient quality will appear on a similar timescale to the computing power required to imitate it.


Early estimates


For low-level brain simulation, a really powerful cluster of computers or GPUs would be needed, given the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon an easy switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil took a look at various quotes for the hardware needed to equal the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a measure utilized to rate current supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He utilized this figure to anticipate the necessary hardware would be available at some point between 2015 and 2025, if the exponential growth in computer power at the time of writing continued.


Current research study


The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed an especially detailed and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.


Criticisms of simulation-based methods


The synthetic nerve cell design presumed by Kurzweil and used in many existing artificial neural network implementations is easy compared to biological neurons. A brain simulation would likely have to record the detailed cellular behaviour of biological nerve cells, currently understood just in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would require computational powers a number of orders of magnitude bigger than Kurzweil's quote. In addition, the quotes do not represent glial cells, which are known to contribute in cognitive procedures. [125]

A basic criticism of the simulated brain approach originates from embodied cognition theory which asserts that human embodiment is an essential aspect of human intelligence and is essential to ground meaning. [126] [127] If this theory is appropriate, any completely practical brain model will require to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unknown whether this would suffice.


Philosophical perspective


"Strong AI" as defined in philosophy


In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between 2 hypotheses about synthetic intelligence: [f]

Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness".
Weak AI hypothesis: An expert system system can (only) act like it believes and has a mind and consciousness.


The very first one he called "strong" because it makes a stronger declaration: it assumes something unique has actually happened to the machine that goes beyond those capabilities that we can test. The behaviour of a "weak AI" device would be specifically similar to a "strong AI" device, however the latter would also have subjective conscious experience. This use is also typical in scholastic AI research and books. [129]

In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level artificial basic intelligence". [102] This is not the same as Searle's strong AI, unless it is assumed that consciousness is necessary for human-level AGI. Academic philosophers such as Searle do not think that is the case, and to most expert system scientists the concern is out-of-scope. [130]

Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it really has mind - indeed, there would be no other way to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two different things.


Consciousness


Consciousness can have various meanings, and some elements play considerable roles in sci-fi and the ethics of artificial intelligence:


Sentience (or "phenomenal awareness"): The ability to "feel" perceptions or emotions subjectively, instead of the ability to factor about perceptions. Some philosophers, such as David Chalmers, use the term "awareness" to refer solely to incredible awareness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience develops is referred to as the tough problem of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be mindful. If we are not conscious, then it doesn't feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had achieved life, though this claim was extensively contested by other professionals. [135]

Self-awareness: To have conscious awareness of oneself as a different individual, especially to be knowingly familiar with one's own thoughts. This is opposed to just being the "topic of one's thought"-an operating system or debugger is able to be "familiar with itself" (that is, to represent itself in the very same way it represents everything else)-however this is not what individuals typically indicate when they use the term "self-awareness". [g]

These characteristics have an ethical measurement. AI life would provide rise to issues of well-being and legal protection, likewise to animals. [136] Other elements of consciousness related to cognitive capabilities are also pertinent to the idea of AI rights. [137] Finding out how to incorporate sophisticated AI with existing legal and social structures is an emergent problem. [138]

Benefits


AGI could have a wide range of applications. If oriented towards such objectives, AGI could assist reduce numerous problems worldwide such as appetite, hardship and health issue. [139]

AGI could improve efficiency and effectiveness in the majority of tasks. For example, in public health, AGI could accelerate medical research, notably versus cancer. [140] It could take care of the senior, [141] and democratize access to fast, high-quality medical diagnostics. It might offer fun, cheap and tailored education. [141] The need to work to subsist might end up being outdated if the wealth produced is appropriately redistributed. [141] [142] This also raises the concern of the place of human beings in a drastically automated society.


AGI could also assist to make reasonable decisions, and to prepare for and avoid catastrophes. It could also assist to gain the advantages of potentially devastating innovations such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's primary goal is to prevent existential disasters such as human termination (which might be difficult if the Vulnerable World Hypothesis turns out to be true), [144] it might take procedures to significantly minimize the threats [143] while reducing the effect of these measures on our quality of life.


Risks


Existential dangers


AGI might represent multiple types of existential danger, which are risks that threaten "the premature termination of Earth-originating smart life or the irreversible and drastic destruction of its capacity for preferable future development". [145] The risk of human termination from AGI has been the topic of numerous debates, but there is likewise the possibility that the advancement of AGI would lead to a completely problematic future. Notably, it might be used to spread and preserve the set of worths of whoever establishes it. If humankind still has ethical blind areas similar to slavery in the past, AGI may irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI could assist in mass monitoring and brainwashing, which might be utilized to produce a steady repressive around the world totalitarian program. [147] [148] There is also a threat for the devices themselves. If machines that are sentient or otherwise worthy of ethical consideration are mass developed in the future, participating in a civilizational path that forever disregards their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI could enhance humanity's future and aid decrease other existential threats, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "deserting AI". [147]

Risk of loss of control and human extinction


The thesis that AI positions an existential risk for people, and that this danger needs more attention, is questionable but has been endorsed in 2023 by numerous public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking criticized prevalent indifference:


So, facing possible futures of incalculable advantages and dangers, the specialists are surely doing everything possible to guarantee the very best result, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll arrive in a few years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]

The potential fate of humankind has often been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence permitted humankind to control gorillas, which are now susceptible in manner ins which they might not have actually prepared for. As a result, the gorilla has actually ended up being a threatened species, not out of malice, however merely as a civilian casualties from human activities. [154]

The skeptic Yann LeCun thinks about that AGIs will have no desire to control humanity and that we should take care not to anthropomorphize them and analyze their intents as we would for humans. He said that individuals won't be "smart sufficient to develop super-intelligent makers, classifieds.ocala-news.com yet ridiculously silly to the point of giving it moronic goals without any safeguards". [155] On the other side, the concept of critical convergence suggests that almost whatever their objectives, intelligent representatives will have reasons to attempt to make it through and obtain more power as intermediary steps to achieving these objectives. And that this does not need having emotions. [156]

Many scholars who are worried about existential danger supporter for more research into solving the "control issue" to address the question: what types of safeguards, algorithms, or architectures can developers implement to maximise the probability that their recursively-improving AI would continue to act in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could result in a race to the bottom of safety precautions in order to release items before rivals), [159] and making use of AI in weapon systems. [160]

The thesis that AI can posture existential threat likewise has detractors. Skeptics usually say that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other problems related to present AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for many individuals beyond the innovation industry, existing chatbots and LLMs are already viewed as though they were AGI, resulting in more misunderstanding and fear. [162]

Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an unreasonable belief in an omnipotent God. [163] Some researchers believe that the interaction campaigns on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to inflate interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and researchers, provided a joint statement asserting that "Mitigating the risk of extinction from AI should be an international concern together with other societal-scale dangers such as pandemics and nuclear war." [152]

Mass unemployment


Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of workers may see at least 50% of their jobs impacted". [166] [167] They consider workplace employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a much better autonomy, capability to make choices, to user interface with other computer system tools, but likewise to manage robotized bodies.


According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be rearranged: [142]

Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or a lot of individuals can wind up badly poor if the machine-owners effectively lobby against wealth redistribution. Up until now, the trend seems to be toward the 2nd choice, with innovation driving ever-increasing inequality


Elon Musk considers that the automation of society will need federal governments to embrace a universal standard earnings. [168]

See also


Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain
AI effect
AI safety - Research location on making AI safe and useful
AI positioning - AI conformance to the designated goal
A.I. Rising - 2018 film directed by Lazar Bodroža
Expert system
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research initiative announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General game playing - Ability of expert system to play different games
Generative expert system - AI system efficient in generating content in response to triggers
Human Brain Project - Scientific research task
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured devices.
Moravec's paradox.
Multi-task knowing - Solving numerous machine finding out jobs at the exact same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of artificial intelligence - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or type of expert system.
Transfer knowing - Machine knowing technique.
Loebner Prize - Annual AI competitors.
Hardware for synthetic intelligence - Hardware specially designed and enhanced for synthetic intelligence.
Weak expert system - Form of expert system.


Notes


^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the article Chinese room.
^ AI founder John McCarthy writes: "we can not yet identify in general what kinds of computational procedures we desire to call smart. " [26] (For a discussion of some meanings of intelligence utilized by expert system researchers, see viewpoint of artificial intelligence.).
^ The Lighthill report particularly criticized AI's "grandiose goals" and led the taking apart of AI research study in England. [55] In the U.S., DARPA became identified to money only "mission-oriented direct research study, rather than basic undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a great relief to the rest of the workers in AI if the developers of brand-new basic formalisms would express their hopes in a more safeguarded kind than has actually in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a basic AI book: "The assertion that devices might potentially act wisely (or, possibly better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are really thinking (rather than replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic basic intelligence benefits all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is creating synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020.
^ a b c "AI timelines: What do professionals in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and cautions of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine risk is not AI itself but the method we release it.
^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential risks to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humanity requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of termination from AI should be an international concern.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals alert of danger of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing devices that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the complete variety of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is changing our world - it is on all of us to make certain that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent qualities is based upon the topics covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of challenging exams both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: larsaluarna.se My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers avoided the term artificial intelligence for worry of being considered as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite development in device intelligence, synthetic basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in synthetic intelligence: A survey of skilled viewpoint. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559.
^ Goertzel & Pennachin 2006.
^ a b c (Kurzweil 2005, p. 260).
^ a b c Goertzel 2007.
^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020.
^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190.
^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130.
^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019.
^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone in between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 tells us there is a happy medium between narrow and general AI.
^ Quach, Katyanna. "A designer developed an AI chatbot utilizing GPT-3 that assisted a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021.
^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 jobs, from playing video games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, recovered 12 June 2022.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023.
^ Bove, Tristan. "A.I. could equal human intelligence in 'simply a couple of years,' says CEO of Google's main A.I. research study laboratory". Fortune. Retrieved 4 September 2024.
^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead".
^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company.
^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024.
^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023.
^ Sandberg & Boström 2008.
^ Drachman 2005.
^ a b Russell & Norvig 2003.
^ Moravec 1988, p. 61.
^ Moravec 1998.
^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study job maps the human brain". euractiv.
^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014.
^ de Vega, Glenberg & Graesser 2008. A wide variety of views in existing research, all of which need grounding to some degree
^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023.
^ Searle 1980
^ For example: Russell & Norvig 2003,
Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),.
MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),.
Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.




^ a b c Russell & Norvig 2003, p. 947.
^ though see Explainable expert system for interest by the field about why a program behaves the method it does.
^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review.
^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024.
^ Nagel 1974.
^ "The Google engineer who thinks the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024.
^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024.
^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal.
^ "Artificial General Intelligence - Do [es] the expense outweigh advantages?". 23 August 2021. Retrieved 7 June 2023.
^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023.
^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023.
^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023.
^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2.
^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will damage ourselves". Vox. Retrieved 8 June 2023.
^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023.
^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6.
^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9.
^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023.
^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023.
^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023.
^ "Stephen Hawking: 'Transcendence looks at the implications of synthetic intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014.
^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023.
^ "The remarkable Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023.
^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023.
^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2.
^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023.
^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023.
^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over threat presented however synthetic intelligence can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023.
^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023.
^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015.
^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, alert researchers". The Telegraph. Retrieved 7 December 2023.
^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI termination threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023.
^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect capacity of big language models". OpenAI. Retrieved 7 June 2023.
^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees might see their tasks affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023.
^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal standard earnings since 'in the future, manual labor will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023.
Sources


UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021.
Chalmers, David (1996 ), The Conscious Mind, Oxford University Press.
Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007.
Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3.
Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68.
Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114.
Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4.
Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013.
Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, retrieved 1 April 2009.
Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011.
Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, retrieved 30 August 2007.
Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5.
Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press.
Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council.
Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7.
McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer programs that can fix problems and accomplish objectives in the world in addition to humans.
Moravec, Hans (1988 ), Mind Children, Harvard University Press
Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006
Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009
Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022.
Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4
NRC (1999 ), "Developments in Expert System", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, obtained 29 September 2007
Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, obtained 6 December 2007
Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009
Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020
Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row
Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.


de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4
Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.


Further reading


Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1
Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - via ResearchGate
Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, recovered 31 August 2012
Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system basic sufficient to be easy to understand will not be made complex enough to act smartly, while any system complicated enough to act intelligently will be too made complex to understand." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead basic foolish. They work, photorum.eclat-mauve.fr however they work by strength." (p. 198.).
Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010.
Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from devices. For biological creatures, reason and function come from acting on the planet and experiencing the effects. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no celebration for that." (p. 30.).
Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013.
- Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who hope to get abundant from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't count on federal governments driven by project finance contributions [from tech business] to press back.' ... Marcus details the needs that people should make from their federal governments and the tech companies. They consist of openness on how AI systems work; settlement for individuals if their data [are] used to train LLMs (large language model) s and the right to approval to this use; and the ability to hold tech business liable for the damages they bring on by getting rid of Section 230, imposing money penalites, and passing stricter item liability laws ... Marcus likewise recommends ... that a new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, might supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... develop [ing] a professional licensing regime for engineers that would work in a comparable method to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers likewise promised to do no harm?'" (p. 46.).
Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and championsleage.review reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653.
Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied humans for years, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has actually exposed that although NLP (natural-language processing) designs are capable of incredible tasks, their capabilities are quite restricted by the amount of context they get. This [...] might trigger [difficulties] for researchers who hope to use them to do things such as analyze ancient languages. In many cases, there are few historic records on long-gone civilizations to work as training information for such a function." (p. 82.).
Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to create fake videos indistinguishable from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply practical videos produced utilizing expert system that in fact deceive people, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in basic, running in our media as counterfeited evidence. Their role better looks like that of cartoons, particularly smutty ones." (p. 59.).
- Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning designs utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81.
Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16.
Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the very same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45.
McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009.
McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1.
Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, obtained 29 September 2007.
Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill.
Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and dispersed at the 2007 Singularity Summit, San Francisco, California.
Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to neglect contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26.
Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed unable to factor logically and tried to count on its huge database of ... facts derived from online texts. "
- Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful however undependable. Rules-based systems can not handle circumstances their programmers did not prepare for. Learning systems are restricted by the information on which they were trained. AI failures have actually already resulted in catastrophe. Advanced autopilot features in cars and trucks, although they perform well in some situations, have actually driven cars without warning into trucks, concrete barriers, and parked cars and trucks. In the incorrect circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to control and hack an AI system, the risks are even greater." (p. 140.).
Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267.
- Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations but depend on the timelelss human tendency to anthropomorphise." (p. 29.).
Williams, R. W.; Herrup, K.